LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2013

2953 - CHEMISTRY OF HETEROCYCLICS AND NATURAL PRODUCTS

Date: 04/05/2013	Dept. No.	Max. : 100 Mark
m' 0 00 10 00	-	

Time: 9:00 - 12:00

Part-A

Answer **ALL** questions.

 $(10 \times 2 = 20 \text{ Marks})$

- 01. Write the biological importance of indole derivatives.
- 02. How is uric acid extracted from natural sources?
- 03. How is the dimethoxymethyl group of alkaloids estimated?
- 04. Group the following alkaloids according to their occurrence.

Papavarine, cocaine, atropine, morphine

- 05. What are depsides? Mention their biological importance.
- 06. Mention the prefixes used to represent the following functional groups in steroids.
 - a) methylene group b
 - b) three membered ring
 - c) ring fission & addn. of hydrogen
- 07. How is camphoronic acid synthesized from acetoacetic ester?
- 08. How are -OCH₃ groups on anthocyanin estimated?
- 09. Give one method of confirming the presence of lactone ring in giberrellic acid?
- 10. How is the position of double bond in zinziberene confirmed?

Part-B

Answer any **EIGHT** questions.

 $(8 \times 5 = 40 \text{ Marks})$

- 11. How is pyrrole nitrated? Why protic acids are not used for electrophilic substitution reactions of pyrrole?
- 12. Mention the biological importance of thiazoles. How is luciferin synthesized?
- 13. How are the following compounds synthesized?
 - a) uracil
- b) imidazole
- 14. Write the structural elucidation of cocaine.
- 15. How is morphine synthesized?
- 16. Explain the biosynthesis of flavonoids.
- 17. Effect the conversion of cadinene to 2,7-dimethylcadalene
- 18. Give the Willstatter's synthesis of anthocyanidins.
- 19. Give the synthesis of oestrone from 3-(3-methoxyphenyl)-1-bromopropane.
- 20. Discuss the structural elucidation of cadinene.
- 21. How is the presence of fluorene nucleus in gibberic acid confirmed by degradation reaction?

22.	2. Discuss the structural elucidation of cyanidin chloride.					
		Part-C				
Ansv	wer any FOUR questions.		$(4 \times 10 = 40 \text{ Marks})$			
23. a) How is pyrazine synthesized from ethylene diamine?			(5)			
	b) How is vitamin E synthesized?	(5)				
24.	Elucidate the structure of papaverine.	(10)				
25.	a) Write a short note on Tannins.		(4)			
	b) What is Emde degradation? How is it an alternative technique to Hoffmann method? (6)					
26.	Effect the following conversions.		(5+5)			
	a) camphoric acid to camphor					
	b) 2-(1-naphthyl)ethylmagnesium bromide to Diels hydrocarbon					
27.	7. Explain the use of the following reagents in the structural characterization of squalene. (4×2.5)					
	i) H ₂ /catalyst	ii) Na/amyl alcohol				
	iii) Ac ₂ O/1% H ₂ SO ₄	iv) CrO ₂ Cl ₂ /CCl ₄				
28.	a) Effect the following conversioni) retene into biphenyl	ii) carvone to	(2×2.5) cadalene			
	b) Give the Robinson method of synth	nesizing hirsutidin chlo	ride. (5)			
